
N A S A TECHNICAL NOTE

'. I

N A S A TN D-

c;

_ - -_.
3924

A REQUEST ORIENTED
INFORMATION SELECTION PROGRAM

by Elizabeth Ryan
Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS A N D SPACE A D M I N I S T R A T I O N W A S H I N G T O N , D. C . APRIL 1967

i'
i
I

TECH LIBRARY KAFB, "l

013044b

NASA TN D-3924

A REQUEST ORIENTED INFORMATION SELECTION PROGRAM

By Elizabeth Ryan

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
.- - ~

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 - C F S T I price $3.00

A REQUEST ORIENTED INFORMATION SELECTION PROGRAM

by Elizabeth Ryan

Lewis Research Center

SUMMARY

The program is a general purpose information retrieval program which can be used
with any file of fixed format documents. The program is easily used by noncomputer
personnel and provides flexibility in search requests and output format. These features
together with efficient design enable the program to satisfy users ' requests for informa-
tion promptly and inexpensively. In order to ensure easy adaptation of the program to
change in computer configuration or manufacturer, it is written entirely in FORTRAN IV.

1 ,

INTRODUCTION

The original need for an information retrieval system at the Lewis Research Center
arose in the Office of Reliability and Quality Assurance. The office had obtained mag-
netic tapes which contained failure and consumption reports and inspectors' reports on
parts used by the Atlas and Centaur projects. Through a 5-year period, over 300 000
such reports were collected. The report forms were of a fixed format, each including
44 fields of information describing the part involved and the reason for the report. A
detailed description of the reports appears in appendix A. Personnel of the office needed
the ability to search through all the report forms, recognize reports on failures of a
particular kind, extract some of the information from those reports, and organize the
extracted information into a meaningful format.

In planning the program, five objectives were defined:
(1) The input for the program should be of a type easily prepared by someone un-

familiar with computers. In particular, the statement of the search request should not
have an artificial appearance.

(2) The program should be flexible both with respect to input and output. The user
should have the ability to express very specific search requests so that unmanageable
amounts of output are not produced. Furthermore, he should have the ability to specify
exactly what information is to be printed from each report and the format in which it is
to be printed, as well as to require that the output be sorted into an order which will aid

him in interpreting the results of his search.
(3) The program should be efficient. The total processing time for a request, in-

cluding tape reading, document inspection, and copying should not be significantly greater
than the tape-read time.

this, the program must be compatible with standard operating procedures so that the
time span between the user 's submittal of a request and the initiation of program execu-
tion can be small.

(5) The program should be neither machine nor system dependent. It should be in a
form which can easily be modified to adapt to change in computers or to permit expansion
of the program's capabilities .

(4) Response to a user 's need for information must be prompt. In order to ensure

GENERAL DESCRIPTION

Before beginning the discussion of how it is used, a general description of the pro-

The reports to be searched are stored on magnetic tapes which will be referred to as
gram may be helpful.

the search tapes. At the beginning of each search tape is a file of information which
describes the format of the reports on the search tape. This will be called the directory
file. (Its detailed description can be found in appendix B.) The program begins by read-
ing the directory file in order to prepare itself for the particular kind of documents on
the search tape. The directory file completely describes the documents on the search
tape. In order to implement the program for a new application, therefore, one must
simply prepare search tapes whose directory files describe the new documents to be
used, for example, personnel records, library files. The format for search tapes can
be found in appendix C. The user 's input cards which contain the search and output
requests are read and interpreted next. After this, the actual search can begin. Docu-
ments are read from the search tape and compared to the user 's search request. When
a document is found to match the request, it is copied onto an intermediate tape which
will be called the hit tape. This process continues until all documents from the search
tape have been checked. The documents which were accumulated on the hit tape are
then read, and the requested information fields are copied from them. The copied
information is sorted and formatted, according to the user 's output request, and printed.

The hit tape is written in a format very much like the search tape. A directory file
and a copy of the search request which produced the hit tape are placed at its beginning.
The hit tape can, therefore, be saved for use later on as a search tape. This effectively
gives the user the ability to produce a relatively general subfile of documents on some

2

subject and to perform more specific searches on the subfile as particular aspects of its
subject become of interest. A description of the hit tape's format can be found in appen-
dix C.

INPUT TO PROGRAM

The major input to be designed was the description of the reports to be selected, the
statement of the search criteria. The user needed the ability, for example, to look for
reports on parts numbered exactly MX472-35 or for reports with a report number
greater than or less than some number. The ability to find all reports related to
VALVES, whether the part name was INTAKE VALVE, VALVE ASSEMBLY, or simply
VALVE was required. Also necessary was the ability to combine requirements; for in-
stance, to find reports on only those TRANSISTORS'which had been manufactured by a
particular company, or to find all reports on TRANSISTORS manufactured by company A
and simultaneously to find all reports on VACUUM TUBES manufactured by company B.
He also needed to be able to list several acceptable entries for a field, to find reports
on parts manufactured by any of several companies. An input form which would include
all these capabilities and still be concise and explicit was needed. The following is a
description of the form which was devised:

to a value by any of the relational operators: greater than, less than, equal to, not
equal to, greater than or equal to, less than o r equal to. By ttvaluet' is meant the
sought after entry in some field (i. e . , TRANSISTOR, 5/12/64, MX472-53, 30014, a r e
possible values for the fields giving part name, report date, part number, and report
number, respectively). The relational operators a re written as follows:

(1) A term of the search statement will be defined as the name of a field connected

greater than

less than

GT

LT
- equal to -

not equal to NE

greater than or equal to GE

less than o r equal to LE

Examples of terms are the following:

F/I PARTNO = 37ABX29 The value entered in the field F/I PARTNO must be
exactly 37ABX29.

3

FAIL DATE GT 1/1/62 The value entered in the field FAIL DATE must be greater
than 1/1/62 (i. e. , must be a date later than 1/1/62).

(2) The search statement is formed by connecting several terms with the following
logical operators:

both te rms must be true

either o r both te rms must be true

$AND $

$OR $

the te rm must not be true NOT

Examples are as follows:

F/I NAME = TRANSISTOR
AND F/I MFR = A

The value in field F/I NAME must be TRANSISTOR, and
also the value in field F/I MFR must be A. This state-
ment describes transistors manufactured by company A.

F/I NAME = TRANSISTOR Either the value in field F/I NAME is TRANSISTOR, or the
value in field F/I NAME is XSTR. This statement
describes parts named either TRANSISTOR or XSTR.

OR F/I NAME = XSTR

(3) A series is defined as a field name connected by a relational operator to two or
more values each of which is connected by the logical operator OR. Its meaning is
that any of the values in the series is an acceptable entry in the specified field.
example,

For

F/I MFR = A OR B OR C

This statement describes parts manufactured either by companies A, B, or C.
(4) In combining te rms the normal hierarchy for logical operations is observed,

(i. e . , operations are performed in the order NOT, AND, OR). Order may be made
explicit by using parenthesis. For example, assume that the user wishes to find all
reports about transistors manufactured by company A o r company B. His request could
correctly be stated as follows:

(F/I MFR = A OR F/I MFR = B) AND

F/I NAME = TRANSISTOR

The parentheses specify that the OR is to be performed first and its result bound by

4

the AND. The statement without the parentheses,

F/I MFR = A OR F/I MFR = B AND F/I NAME = TRANSISTOR

would not express the user 's intention, since it would describe transistors manufactured
by company B, but also parts of any kind manufactured by company A. (Since the AND
is performed first, it will bind the F/I NAME condition only to the term F/I MFR = B,
and that result will be connected by the OR to F/I MFR = A.)

The example in item (4) can therefore also be correctly stated as
(5) The ser ies is treated as a single term when being combined with other terms.

F/I MFR = A OR B AND F/I NAME = TRANSISTOR

Since the previous form is considered to consist only of two terms, there can be no
question as to what the AND is binding.

(6) The first or last n alphameric characters in a field can be checked by inserting
an F(first) or L(1ast) immediately after the leading $ of the relational operator. If
relation is "equal to, '' the graphic = must be preceded by a $F o r $L. The n charac-
t e r s which are being searched for are the value in the term. For example,

F/I NAME $L = VALVE

This described all reports having the characters V-A-L-V-E as the last five nonblank
characters in the F/I NAME field.

for each run. He needs the ability to specify not only which fields of information a re to
be printed, but in what order across the page they should be printed. In order to obtain
meaningful printouts, he must also have the ability to request that the selected reports
appear in some order. He might wish, for instance, to request that the reports appear
in order according to the values in their part name field, and furthermore, that within
that order they be ordered according to the values in the manufacturer field. Since the
reports are to be ordered by these two fields, the user will probably want them to appear
leftmost on the printout. He expresses these specifications simply by listing the report
fields he wishes to see in the order in which they should appear across the page and by
listing the fields by which the output is to be ordered.

cards:

In addition to stating the search criteria, the user must be able to describe the output

The options outlined previously are expressed by the user through these four control

5

(1) *SEARCH

(2) *LIST

(3) *SORT

This card contains the statement of the search critieria written
according to the rules defined previously. For example,

*SEARCH F/I NAME = TRANSISTOR OR XSTR AND

FAIL DATE GT 1/1/61 OR F/I NAME =

DIODE AND ACTIVITY = A9

The user is interested in all "transistors" or "xstrs" which
were reported since January 1, 1961. He also wishes to see
all reports about "diodes" which were being used in activity
"A9. ''
This card lists the names of all report fields to be printed as
output. The report fields will appear as tabular columns in the
order left-to-right in which they appear on the LIST card. This
card may be omitted, in which case only a statement of the
number of reports found, will be printed as a result of the
search. For example (Note that the names a re separated by
commas.),

*LIST F/I NAME, F/I PART NO, FAIL DATE, ACTIVITY,

MISSILE SERIES, MISSILE TYPE CODE,

F/I MFR CODE, N/A NAME

The output produced by this request can be seen in appendix D.

This card contains the names of the report fields by which the
tabular output will be sorted. Alphabetic fields will appear in
normal alphabetic order, while numeric fields appear in
ascending numeric order. The first field listed will be used as
the primary key; if a second field is listed, it will be used as
the secondary key. It should be separated from the first field
by a comma. Only two keys can be specified. The SORT card
may be omitted, in which case the reports will appear in the
order they were encountered on the search tape. For example,

*SORT F/I NAME, F/I PARTNO

6

Note the ordering of the sample output (appendix D) which was
specified by this card.

This card simply marks the end of input and must appear as
the last card of every input deck.

(4) *END

The following rules apply to the format of all the control cards:

card identifier (SEARCH, LIST, SORT, o r END). No blanks may appear within the
identifier, but it may be separated from the asterisk by any number of blanks.
card in the sample input of appendix D illustrates this.)

card or the field names for the LIST and SORT cards) is separated from the identifier
by at least one blank column.
information.

(1) An asterisk must appear in column 1 of each control card. It is followed by the

(The END

(2) The specification information for each card (the search statement for the SEARCH

Blanks may appear anywhere within the specification

(3) The contents of the control cards may be continued onto additional cards at any
point.
appendix D.) The continuation cards must not have an asterisk in column 1.

(4) The control cards may appear in any order except that the END card must be
last.

(This is illustrated by both the SEARCH and LIST cards in the sample input deck,

PROGRAM OUTPUT

Printed output consists of the following sections:
(1) Input analysis - Before the search can begin, the user 's input must be read and

analyzed. The first output to appear on the listing is associated with this input analysis.
If the search tape for this run is a hit tape which was saved from a previous search,

the search statement which produced the hit tape is printed preceded by the following
statement:

SEARCH TAPE CONSTRUCTED O F ITEMS AS FOLLOWS

As each control card is read and interpreted, any e r r o r s found in its format will be
indicated by appropriate messages. (See appendix E for a listing and explanation of all
e r r o r messages.)

Immediately after this an analysis of the search request is printed.
by breaking the search statement into simpler substatements. Each substatement is
assigned a numeric label. The way in which the substatements are logically related to
form the search statement is then indicated.

-When the SEARCH card is encountered, it is printed out exactly as it was read.
This is produced

(See sample output of appendix D for an

7

example of a search statement and its analysis.) If any logical redundancies or in-
consistencies are detected during analysis of the search statement, these will be indi-
cated by error messages.

(2) Search results - When the search has been completed, its results are reported
to the user . The number of reports which were found is reported in the following form:

SEARCH YIELDS XXXXXXX HITS.

This statement always appears following completion of the search.

requested will be printed in tabular form. Output will be ordered according to the
user 's request on the sor t card.

If the total width of the report fields requested on the LIST card exceeds the page
width, right -most fields will be omitted.
however, an exception was made for the description fields (DESC LINE 1, DESC LINE 2,
DESC LINE 3). Provided that the user lists these fields as the last fields on the LIST
card, they a re printed as two additional lines per report.

If output sorting is requested, it may be necessary to split the reports into two o r
more sorted groups for output.
in the section on subroutine SOUT, appendix F.) If so, this will be indicated by messages
of the form:

If a LIST card was included, column headings will be produced and all report fields

For the program application being described,

(The conditions which force th i s to occur are described

SELECTED REPORTS WILL BE PRINTED IN XxxXX GROUPS.

. . . GROUP XXXX YYYYY REPORTS

(See sample output, appendix D).

EFFlC IENCY

Execution times for all searches recorded thus far have proved to be a function only
of the length of the search tapes. The complexity of the search statement has not been a
factor in determining run times.

For the current application, approximately 33 000 report forms are stored on a
single tape. At 800-bit-per-inch density, the tapes are one-half to three-fourths full.
For the computer configuration in use at this installation, the program searches such a
tape in approximately 3 minutes.

The efficiency of the program is due in large part to two factors, the analysis of the

8

search statement and input-output optimization.

The analysis has three purposes.

comparing each report against this particular search statement.

used to channel the search algorithm through the ordered operations just determined.
When the reduction is complete, the search statement as expressed by the user exists
only in the form of these switches.

Redundant requirements can be omitted, thus eliminating unnecessary checking at search
time. Logic e r r o r s may be such as to render the entire statement meaningless, in
which case the search will not be carried out.

In order to optimize input-output speed, the subroutines required for the three
distinct program phases (input analysis, search, and reporting) a re overlaid. By thus
minimizing the core storage devoted to program, a maximal amount of core can be
devoted to input-output buffers. This, in turn, allows a greater amount of information to
be transmitted for each input-output operation.

The search statement is analyzed thoroughly as it is read from.the SEARCH card.

First, it determines the most efficient possible order of operations to be used in

Secondly, it reduces the search statement to a set of logical switches which will be

Third, as the statement is reduced, logic e r r o r s and redundancies may be detected.

Prompt Response

Because the program is written entirely in FORTRAN IV, it can be run as a normal
job at most installations. As soon as the user 's request has been prepared, therefore,
it can be inserted in the job stream for processing.
ciency of the program itself, ensures that response to a search request will be prompt.

This fact, together with the effi-

Expansion and Modification

Since FORTRAN IV is a language widely used among computer installations and
widely supported by computer manufacturers, the program can be easily modified by the
user installation. The program is separated logically into subroutines so that one
program function can be changed o r rewritten without affecting another.

INTERNAL ALGORITHMS

This section will describe the algorithms developed for analysis of a search state-

9

ment and for output ordering.

Analysis of Search Statement Q

The search statement is essentially a logical expression written using the conven-
tions of an algebraic notation. Each te rm of the statement corresponds to a logical
variable, a ser ies to a number of such variables bound together with the logical operator
OR. Thus, in a symbolic logic notation, the statement

F/I NAME = TRANSISTOR OR XSTR AND FAIL DATE GT 1/1/61

$OR $ F/I NAME = DIODE $AND $ ACTIVITY = A9

could be represented by the following expression:

where

q1 represents the "truth" statement
q2 represents the "truth" statement
q3 represents the "truth" statement
q4 represents the "truth" statement
q5 represents the "truth" statement

F/I NAME is TRANSISTOR
F/I NAME is XSTR
FAIL DATE is later than 1/1/61
F/I NAME is DIODE
ACTIVITY is A9

The first part of the analysis of the statement is concerned with the algebraic
reduction of its logical expression. This reduction is analogous to the algebraic reduc-
tion of a mathematical expression and can be handled in much the same manner.

The technique used for this phase of analysis is one developed by Peter B. Sheridan
for use in the IBM 704 FORTRAN I1 arithmetic translator. It is described in reference 1.
Sheridan is concerned with the reduction of an expression involving operators of four
precedence levels (function, exponentiation, multiplication-division, addition-subtrac-
tion). The search statements involve operators of three levels (NOT, AND, and OR).
The AND operator can conveniently be considered the analog of multiplication and the
OR of addition. The NOT operation has the highest level of precedence, and could
therefore, be considered the analog of the function operator. It is more similar in
context, however, to the minus sign used as an unary operator to mean algebraic
negation (e. g. , X = SIN(-8)). This sense of the minus sign is handled by Sheridan in a
somewhat artificial manner since he must also provide for the use of minus as the binary

10

operator "subtract" (e. g . , Z = X - Y). (Note that the unary operator negate has a level
of precedence equal to that of function, while the binary operation subtract has a level of
precedence equal to that of addition.) Because the NOT operator matches the unary
minus not only in its level of precedence but in its context within a statement, it was
decided to handle NOT as Sheridan handles the minus sign rather than as a function.

Use of Sheridan's algorithm is discontinued after the telescoping and ordering of
segments. At this point, there has been formed an a r r ay P which is composed of triples
of the form (C, Z, Y). A triple has been formed for each te rm of the search statement;
some additional triples represent combinations of those terms. The first element C of
each triple is an indicator of the order in which the triple is to be considered relative to
other triples. The operands Y of all triples having equal C elements are to be com-
bined using operator Z which may represent NOT, AND, or OR. The ar ray P is con-
structed as follows: For the ith triple, Pli = Ci.

Triples of high precedence have low Ci; those of low precedence have high Ci.
Within P, the triples are ordered by ascending Ci. All triples with equal Ci = K are
said to belong to segment K.

P2i = Zi where Zi is an integer indicating the ,operator associated with triple i.
Since no two of the possible operators (NOT, AND, and OR) have the same level of
precedence, all triples within a given segment will have the same operator.

PQi = Yi where Yi, the operand, may refer to another segment or to a variable -
one of the original terms. A segment whose operator is NOT must be of length 1 since
NOT is a unary operator. Segments whose operators a r e either AND or OR may be of
any length because of the associativity of the operations. Because AND and OR also
exhibit commutativity, the order in which the triples of such segments are combined is
immaterial.

To illustrate, the following is a sample search statement:

F/I NAME = TRANSISTOR OR XSTR AND FAIL DATE GT 1/1/61

OR F/I NAME = DIODE AND ACTIVITY A9

o r

(91 + q 2 h 3 + 9495

is represented at this point in analysis by the following table:

11

Z OR OR ANC
Y 2 14 $3

8

14
AND
$4

The operators NOT, OR, and AND are represented by Z = 3, 2, and 1, respectively.
The numeric operands (Y = 2 for triple 1) refer directly to the corresponding segment.
The flagged operands ($2 for triple 5) are pointers to three additional tables which define
the original "truth statements" q1 - q5. These three a r rays appear as follows:

OW 1 4 7 8 1 1

The contents of PRED shown graphically here are actually numeric indicators (i. e. , =
would be represented by 1; > by 3). The numbers in NOUN relate to a list of all the
report fields; field 2 is ACTIVITY, field 12 is F/I NAME, and field 23 is FAIL DATE.
OBJ contains pointers to a r ray TABL which contains the values associated with each
te rm as shown in the following table:

TABL 1
2
3
4
5
6
7
8
9
10
11

000000

SISTOR
1 000000
000000
OOXSTR
010101
000000
000000
ODIODE
OOOOA9

The expanded contents of P a r e printed out at Lis point in reverse order. A s
each segment is expanded for output, it is checked for logical redundancies and er rors ;
if either or both are found, a comment will be printed below the segment in question.
(For additional comments, see appendix E.) When expanded, the aforementioned ar ray P
will be printed as follows:

12

ANALYSIS O F SEARCH STATEMENT

(014 F/I NAME = OOOOOOOOOOOOODIODE AND ACTIVITY = 0000A9

(005 F/I NAME = 00000000TRANSISTOR OR F/I NAME =

OOOOOOOOOOOOOOXSTR

(002 (005 TRUE AND FAIL DATE GT 010101

(001 (014 TRUE OR (002 TRUE

ACCEPT IF (001 IS TRUE

This can be seen to be a correct restatement of the original search statement. If
each report form on the search tape were checked in the manner indicated (i. e. , using
the entire P array in reverse order), correct results would be obtained. The remainder
of the analysis is concerned with developing from this a "most efficient" plan for report
checking. The aim is to develop an a r ray of "pointers'? which will channel the report
checking function through the requirements of the search statement in an efficient order.

There a re two important differences between the evaluation of an arithmetic expres-
sion and the evaluation of a logical expression.

The first is that, in the case of an arithmetic expression, each term must be con-
sidered in order to arrive at a correct value for the expression. In contrast, the value
of a logical expression, which can be only TRUE or FALSE, can often be determined
without considering all i ts terms. For example, consider the following algebraic ex-
pression:

v = px(q + s)

If p, q, and s represent numeric values, say 4, 9, and 3, respectively, the value of
each must be known before arriving at the correct numeric value, 48, for v. On the
other hand, if p, q, and s represent logical values and the operators x and + repre-
sent the logical operators AND and OR, respectively, it may not be necessary to con-
sider the value of all three variables. Suppose p has the value FALSE, then it can be
seen immediately that v also h u s t have the value FALSE. The values of q and s
need not be considered.

the order of operations performed in their evaluation. If the expression is numeric, it
is most efficient to completely evaluate the inner expressions first and then combine

The second difference between arithmetic and logical expressions is concerned with

13

their values with outermost terms. If the expression is logical, however, it is most
efficient to examine the outermost terms first. In this way, the inner subexpressions
may never have to be evaluated.

sequence of operations for report checking.
first cause outermost te rms to be considered before inner ones; and secondly, it must
ensure that only necessary te rms will be considered. In order to fulfill the first
requirement, the pass through ar ray P, which prints the search analysis and checks the
logic of each segment, performs two additional functions:

(1) The cumulative length of each segment is recorded in an array, LIST. By
cumulative length of a segment is meant the sum of the number of its triples whose
operands are flagged and the cumulative lengths of all segments which appear as operands
of tr iples in the segment.

are flagged are placed at the beginning of each segment.
operands refer to other segments, are placed in ascending order according to the
cumulative length of the operand segment. The effect of this is to place triples with
simple operands ahead of those whose operands a re more complex.

Note that both these functions can be performed on the single back to front pass
through P. This is true because any segment referred to by another must be an "inner"
expression and consequently have a higher C number. Its length will, therefore, have
been determined before the segment which refers to it is encountered.

be

These two characteristics can be used to advantage in determining an affective
The search controlling a r ray STEP must

(2) The triples within each segment a re reordered. Those triples whose operands
The remaining triples, whose

.
After this reordering has taken place, the P ar ray for the example being used will

Triple

OR OR AND AND OR OR
14 2 $2 $1

Essentially, the logical expression

7

14
AND
$5

~

8

14
AND
$4

(91 + + 9495

has been rewritten

14

Since P has now been arranged to ensure that triples will be considered in an effi-

Cor-
cient order, the remaining requirement is to ensure that no triple will be considered
unnecessarily.
responding to each triple in P, there will be defined an entry in column 1 of STEP which
is to be consulted by the report checking routine if the triple's operand is found to be
TRUE. The entry will be either equal to 0, which indicates that the report has now been
shown not to match the search statement, equal to -1, which indicates that the report
has now been shown to match the search statement, o r equal to some positive number,
which points to the next triple within P which should be checked.
similarly defined and will be consulted if the triple's operand is found to be FALSE.

The construction of STEP can best be defined by referring again to the example.
Beginning at the top of P the operand of the first triple is the value of segment 14. In
checking a report from the search tape, then, the first question would be whether or not
the conditions of segment 14 are satisfied. Since the first triple of segment 14 appears
as triple 7 in P, a variable START is equal to 7.

Segment 14 is an AND segment; therefore, if any triple is determined to be false,
the entire segment is false - no other tr iples need to be checked. On the other hand, if
a triple is found to be true, the next triple must be checked until all have been found to
be true. Therefore, the subscript of the next triple is placed in the TRUE column of
STEP opposite triple 7. If the segment is false, the significance of this is determined
by the type of segment 1 which referred to segment 14. Since segment 1 is an OR
segment, the falsity of one of its triples means only that the next triple must be checked.
Therefore, the entry in the FALSE column of STEP for triple 7 points to the first triple
of segment 2. (The logical paths which trace the relatedness of the various segments a re
recorded during the construction of STEP, in a push-down list PATH.)

cause the entire segment 14 to be true if it is true. When this is related back to seg-
ment 1, which is an OR segment, it is seen that segment 1 must also be true. Since
segment 1 is the outermost segment - it is referred to by no other segment - its truth is
a necessary and sufficient condition for the acceptance of the report being checked.
Thus, the correct entry for the TRUE column of STEP for triple 8 is a -1.

the conclusion the variable START = 7 and the STEP table is as follows:

To accomplish this, STEP is constructed as a two column array.

Column 2 of STEP is

By similar reasoning, since triple 8 is the last triple of the AND segment 14, it will

The remainder of the STEP table is filled in, according to the same criteria. At

15

Triple

1
2
3
4
5
6
7
8

Referring back to the five original truth statements of the search statement, it can
be seen that STEP constitutes a program-generated flow chart (see fig. 1) of the
strategy for comparing a document to the search statement of the example.

Step

True False

-- --
-- --

5 0

-1 6
-1 0

-- --

8 3
-1 3

Triple 7 Triple 3

TriDk 6

Figure 1. - Program developed search logic

q - R e p o r t does I
not match user
description

Since the report checking subroutines simply follow along the contra, paLs defined
by the analytical routines, the search operation becomes very efficient.
making is required except for the simple comparison of report field to user-requested
value. The number of such comparisons is minimized by the optimization of the "flow
chart" defined for a particular search statement.

No decision

16

0 utp ut 0 rde r i ng

The tabular output is ordered by the two subroutines, SOUT and SORTER. In sub-
routine SOUT the process is initiated by packing the required fields (those to be used as
sor t keys and those to appear as output) into a buffer area. For each document, the
fields are placed in the buffer as follows.

right-adjusted within the buffer words, but the adjustment of the values within the fields
is not disturbed. Blanks which appear in the values are replaced by zeros. Thus, the
sorting, algorithm assumes that numeric values are right-adjusted and alphabetic values
are left-adjusted in their fields as documents are represented on the search tapes. The
length, in words, of the so t t fields (there may be one or two) is given by the variable
KLEAR.

The fields requested as output are extracted and placed in the buffer following the

The fields to be used as sor t keys are extracted and stored first. The fields are

sor t fields. The output fields are left-adjusted in the buffer words. The total number of
buffer words required per document for both sor t and output fields is given by variable
LENGTH.

As the sor t fields from each document a re extracted and stored, they a re compared
to the sor t fields of the previous document. Consecutive documents whose sor t fields
are found to be in ascending order are said to comprise a naturally ordered group of
documents. (A group may include only one member.) A count of the number of such
naturally ordered groups is maintained in variable K. The location and length of each
group is recorded in the two arrays, LISTl and LIST2. For group J, the Jth entry
in LISTl gives the beginning buffer word of the first document in the group, and the Jth
entry in LIST2 gives the beginning buffer word of the first document in the next group.
(Initially then, if J # 1, LIST1, = LIST2J l .)

complete the ordering and printing of output.

SORTER to find the smallest key. During the K comparisons, each time a new
smallest key is found the number of the group which produced it is recorded in a push-
down list ISAVE. When all K groups have been checked, the output fields for the
member which produced the smallest key can be printed.

Suppose the Ith group contained the smallest key.
group has been printed, LISTII is incremented by LENGTH so that it gives the location
of the next member. The previous smallest key can be found using the information
stored in ISAVE. It needs only be compared to the key of the new first member of
group I and the first members of groups I to K. Again, the member whose key is
smallest is printed, LIST1 is incremented, and a new series of comparisons is initiated

When the buffer area BUFFER has been filled, subroutine SORTER is called to

The sort keys from the first member of each of the K groups are compared by

Aftesxhe first member of the

17

depending upon the status of ISAVE.

the resulting LISTII is compared to LISTBI. If they are equal, group I has been printed
completely and contains no additional members. In this case, LISTll is set to zero so
that SORTER can easily recognize, in succeeding scans, that group I should be skipped.
If I = K (i. e . , if the group which just became empty is the last group), K is reduced by
one. Similarly, a variable IBEG is used to indicate the first group; if group IBEG
becomes empty, IBEG is incremented by one. If all groups except one become empty
during the ordering process, the members of the remaining group are simply printed
one after the other as they lie in BUFFER.

control returns to SOUT. If additional batches are required, SOUT will reinitiate the
process for the new set of documents (See section SOUT in appendix F.).

Each time a LIST1 entry is incremented to point to a new member of some group I,

When all groups become empty, the output of one ordered batch is complete and

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 25, 1967,
12 5 -2 3-02 -10 -22.

18

APPENDIX A

DESCRIPTION OF REPORT FORMS

The failure and consumption data and inspectors reports which make up the search
file for the application being described contain the following information fields:

(1) REPORT NO

(2) ACTIVITY

(3) MISSILE TYPE CODE

(4) MISSILE SERIES

(5) MISSILE SERIAL NO

(6) TGSE-GSE PART NO

(7) TGSE-GSE SERIAL NO

(8) F/I PART NO

(9) F/I SERIAL NO

(10) F/I NAME

(11) F/I REFERENCE DES

(12) N/A PART NO

(13) N/A SERIAL NO

(14) N/A NAME

(15) FAIL CODES

Seven character serial number which uniquely identifies
each report

Two character code which identifies the base, installation,
or subcontractor at which the report originated

Four character code which is assigned by the govern-
ment to a contractor or by a contractor to the contract
under which the part was used

One character which identifies the missile program
involved

Three character serial number which identifies the
specific missile involved

Twelve character part number of the test ground support
equipment or ground support equipment which con-
tained the part involved

Seven character serial number of the test ground support
equipment or ground support equipment which con-
tained the part involved

Nineteen character part number of the part involved

Seven character serial number of the part involved

Thirteen character name of the part involved

Seven character reference indicating the position of the
part on a schematic

Nineteen character part number of the next higher
assembly in which the part was used

Seven character serial number of the next higher assem-
bly

Twelve character name of the next higher assembly

Six character code which gives the cause and effect of a
failure

19

(16 F/I MFR CODE

(17) SUBSTITUTE PART NO

(18) REPL SERIAL NO

(19) SYSTEM

(20) FAILDATE

(21) USAGE 1-2

(22) DDCODE

(23) RRCODE

(24) RACODE

(25) RBCODE

(26) FAIL CLASS

(27) RESP CODE

(28) FAIL CATEGORY

(29) STD/CPLX

(30) HV GRP NO

20

Five character government-assigned code which identifies
the manufacturer of the part involved

Nineteen character part number of the alternate part used
as a replacement

Seven character serial number of the replacement part

Two character number of the airborne or ground support
system in which the part was used

Date of failure or replacement is recorded as five charac-
ters of the form YM1M2D1D2 where Y is the last
digit of the year, MlM2 is the month, and D1D2 is
the day of the month

Sixteen character's which indicate the total operating time
to replacement of the part involved; "time" may be
expressed in (1) hours-minutes-seconds, (2) cycles,
(3) days, or (4) miles

One character code which indicates whether a failure '

was discovered during test, inspection, shipping,
operation, and so forth

One character code which indicates the reason for the
report (i. e . , failure, engineering change, etc.)

One character code which indicates the repair action
taken on a failed part

One character code which indicates the replacement
action taken

One character code which indicates the relative impor-
tance of a failure

Two character code which indicates the primary cause of
a failure

One character which indicates the general point at which
a failure occurred (i. e. , testing, countdown, etc.)

Two character code which indicates the offsite stand or
complex in use when the failure or replacement
occur red

Two characters which are used to group critical parts
into general part o r material categories

(31) REV IND.

(32) IR

(33) WEEK CODE

(34) DESC LINE1

(35) DESC LINE2

(36) DESC LINE3

(37) REPORTING DEPT

(38) RECEIVING PRT NO

(39) ASGD DEPT

(40) QUANTITY REJECT

(41) SOURCE

(42) MULT USE IND

(43) F/I SERIAL CODE

(44) FINAL DISPOSITION

One character which identifies a form as a revision of a
previous report

One character which indicates that a form is an inspec-
tor 's report

Three character code which identifies the current week
or processing period

Forty-five characters which make up the first line of
commentary on any unusual circumstances associ -
ated with the report

Forty-five characters which make up the second line of
commentary on any unusual circumstances associated
with the report

Forty-five characters which make up the third line of
commentary on any unusual circumstances associated
with the report

Four characters which identify the department which
submitted the report

Seven character number of a receiving report

Four characters which identify the department assigned
to investigate a failure

Five characters which specify the quantity of parts
rejected (if this report originated in inspection or
test)

One character which indicates the source of the part
involved

One character

One character which signifies that more than oneof the
indicated parts was involved in a failure

One character which indicates the final disposition of the
part involved

In addition to the aforementioned fields which appear on the original report docu-
ments, the contractor who prepared the search tapes added to the tapes four code fields
which facilitate the use of the tapes under the 9 PAK system. The additional fields are
not relevant to this report.

21

APPENDIX B

FORMAT OF DIRECTORY FILE

The tapes, as acquired by the Office of Reliability and Quality Assurance, had been
prepared for use under the 9 PAK system. The directory file required by 9 PAK con-
tains four types of records which are identified by the appearance of a B, E, F, or P
as the first character of each record. (All characters are represented in the IBM in-
ternal BCD 6-bit character set. The tapes are written in the binary mode.) Only the
F-type records are used by the program; their format is the following:

I V F I I character 1

characters 11 to 13

characters 18 to 21

Length, in bits, of a report field

Number of complete 36-bit words which precede this field in the
report forms

characters 22 and 23 Number of bits which, in addition to the words given in charac-
ters 24 t o 27, precede this field in the report forms

characters 24 to 47

characters 48 to 78

Name of the report fields

Ignored by the program

An F-type record must appear for each of the fields which appear on the search
tapes. (These are enumerated in appendix A.) They a r e used to define the length and
placement of each field within the report forms. For example, the F record for the
ACTIVITY field is the following:

Characte I

1 to 6
7 to 12
13 to 18
19 to 24
25 to 30
31 to 36
37 to 42
43 to 48
49 to 54
55 to 60
61 to 66
67 to 72
73 to 78

~-~

F O l O O O
4 1 1 0 0 1
2 0
0 0 2 0 6 A
C T I V I T
Y

0
3 1

9 9 9 9
9 9
Y L (C 2

22

1
2

END O F FILE APPEARS NEXT ON TAPE 152631432560

0 1 0 0 0 0 within the report form. Applying this information to the partial
B 0 8 1 4 9 report form, shown at the left as it would appear on tape,

A reveals that the ACTIVITY in which the reported part was in-

END O F TAPE 156 321472 560

END O F SET 1562256 36060

23

APPENDIX C

FORMAT OF HIT TAPES

Although the 9 PAK type format (described in appendix B) includes the information
necessary for processing the search tapes, a different organization of the information
is more suitable for the purposes of the program. The hit tapes are, therefore, written
in a slightly different format than the original search tapes, and it is recommended that
new program applications use the hit tape format exclusively.

The first, or directory file, has the following format: (All records are FORTRAN-
readable - the FORTRAN control words, though not shown, are assumed to be present.
Records are shown as FORTRAN logical records and may consist of several physical
tape records.)

RECORD 1:

word 1

word 2

word 3

word 4

words 5 to N + 1

N, the integer number of 36-bit words which follow in this record

Integer number of 36-bit words which make up one search docu-
ment (report form)

Integer number of search documents per (logical) record

M, the integer number of fields per search document, and,
therefore, the number of directory records to follow in this
file

A copy of the search statement (in A1 format) which produced this
hit tape (a maximum of five cards will be copied)

RECORDS 2 to M + 1 describe each field of the search documents as follows:

word 1

word 2

word 3

word 4

word 5

K, the integer number of 36-bit words which follow in this record

Length of this field (in bits)

Number of bits which precede this field in the search documents

Length (in bits) of the field name

Beginning word position of this field name in an array which con-
tains all field names

word 6 Ending word position of this field name in an array which contains
all field names

words 7 to K + 1 Name of the field (in A6 format); embedded blanks are included

RECORD M + 2 is the end of file marker as defined in appendix B. It is followed by an

24

end of file which separates the directory file from the search documents. The format of
the records which contain the search documents is as follows:

word 1

words 2 to J + 1

J, the integer number of 36-bit words which follow in this record

One or more search documents (the number of documents per
record wil l not exceed the number specified in word 3 of
directory record 1)

The end of the hit tape is marked by the end of set message defined in appendix B.
No provision is made currently for producing multiple-reel hit tapes.

25

APPENDIX D

SAMPLE JOB

This appendix contains the input for and output from a search which was run using
the program. As indicated by the output listing, 509 hits were found during the search.
The listing of the hits as requested on the *LIST card is terminated after 54 documents
in order to conserve space.

Sample Input Deck

F A I L DATE GT 1/1/61

*LIST F/INAME, F / I P A R T N O , F A I L DATE, A C T I V I T Y , MISSILE S E R I E S ,

* S O R T F/ INAME, F/I PARTNO * END

MISSILE TYPE CODE, F/I MFR CODE, N/ANAMF.

Sample Output Listing

The following partial listing shows the format of output obtained:

+ S E A R C H F / I N A Y F = T R A Y S I S T J ? 5 O R B X S T R SANDS F A I L D A T E I G T S 1 /1 /61
OR F / I N A Y E = D I O D E S $ Y > $ A Z T I V I T Y = A 9

A N A L Y S I S ‘IF S E A R C H R E Q U E S T

1 0 1 4 A C T I V I T Y = 003049 A N D F / I N A M E = 3 o 0 o o o o o n o n m o 1 o ~ ~

F / I Y A Y F = 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 X S T R OR F / I N A M F = 3 C O 0 0 0 0 0 T R A N S I 5 T f l R 1005

1002 F A I L D A T E G T 010101 A N D (0 0 5 T Q U F

1001 (0 1 4 T R U F 03 1002 T R U E

A C C E P T I F 1 0 ’ 1 1 IS T R U E

26

S E A R C H Y I E L D S 509 H I T S .

SELECTED R E P O R T S W I L L B E P 3 I N T E 3 I N 1 GROUPS.

.-. G R f l U P 1 5 0 9 R E P 3 R T S

27

F / I NAYE F / I PART NJ F A I L DATE A C T I V I T Y M I S S I L E M I S S I L E F / I N/A NAME
SERIES TYPE

D I O D E
0 I O D E
D I O D E

TRANS I S T J R
TRANS I S T l R
TRANS I S T J Q
T RAN S I S T J R
TR AN S I S T JR
TRANS I S T J R
TRANS I S r J R
T R AN S I S T J R
TRANS I S T 3 - 7
T R A Y S I STJR
T R AN S I S T 3 Q
T RAN S I S T 3 R
T P AN S I S T 3 R
T RAN S I ST 3 R
TRANS IST J R
TRANS I S T 3R
TRANSISTJR
TRANS I S T l R
TRANS I S T 3 1 (
TRANS I S T J Q
TRANSISTlR
T R AN S I S T O R
T RAN S I S T J K
T RAN S I S T l R
T R AV S I STJH
T RAN S I ST 1 R
TRAiUSIST.39
TRANSISTJR
T RAN 5 I ST3R
T RAN S I ST J R
T RAN S I S T J R
T RAN S I S T J R
TRANS I S T J H
TRANSISTOR
TRAVSIST3R
T RAN 5 I S T J R
T RAN S I S T J R
T R A Y S I S T l R
T R A Y S I S T J R
T R A Y S 1 S T I R
TRANS I S T JR
T RAN S I S T J Q
T R A Y S I S T J R
TRANS 15TflR
T R A Y S I S T D R
T R AN S I S T J R
T RAN S IS T 3 R
TRANS I S T O K
T RAN 5 IST3R
T RAN S I S TClR

o i n n E

1 5M822
1'4 1 0 8 4
114'43025
650C5
l6T36HP
16T 36MP
26-12199- 3
26-12199- 3
26- 12223-801
2-00056-004
2 - 0 3 9 6 0 - 0 0 1
2NlG48
2N109
2N109
2N1129
Z N l l 3 6
2N1136
2N1136
2 x 1 1 4 6
2N1150
2N1150
2h11152
2N115h
2N1272
2N1232
2V1232
2N1237
2Y1232
2N1232
ZN1232
2N1232
2N1232
2'41233
2N1289
2N13C1
2N1301
2N1302
2N1303
2N1310
2N1312
2N1335

2N1358
2V1374
2 Y l 3 8 1
2N145
2'41482
2N1484
2N15R
2V1605
2N1605
2 4 1 6 0 5

2N1605

2 ~ i 358

n i b 0 5

20822
2 0 6 1 1
2 0 9 2 0
2 1 0 2 6
20723
2 072 5
2 032 2
2 1 0 1 9
2 0 1 0 9
70712

20905
2 0 3 7 1
20223
2 01 09
20103
2 1 2 1 7
2 1 2 1 7
2 022 1
2 0 1 1 7
2G123
2 0 1 1 7
20108
2 041 1
2 0 3 1 4
2 0 3 0 1
2 032 3
2 0 3 2 6
2 0 3 1 9
70112
2012' t
20124
2 03 05
201 OR
2 1 2 l Z
2 1 2 1 7
2 0 1 0 9
2 0 1 0 9
20803

2 0 9 2 7
20302

2072 7

7 C104

20315
2 0 2 0 1
2C712
20215
2 0 2 1 h
2 0 2 l h
2 0 2 1 7

20405

z n z i 4

2 0302

21031

203n5

A 9
A 9
A 9
A9
9 0
9 I1
9 9
9 9
9 9
8 3
8 3
9 9
R 9
99
90
9 0

9 0
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
99
9 9
9 9
99
9 9
9 9
99
9 9
9 0
9 0
9 9
99
9 0
90
9 9
9 9
9 9
9D
3 R
9 9
3 9
99 .
9 9
9 0
9n
9 D
90
9 0

9 n

n
E
E
0
D
D
D
0
0
F
F
0
F
E
E
E
0
0
E
0
D
F
D
D
E
E
0
D
0
E
E
E
F
D
E
E
D
E
F
F
0
E
E
E
F
D
E
E

F
F
F
F
F

n

CODE

SM65
F Y b 5
SM65
SY65
SY65
SY65
SM65
SM65
SH65
SM65

SY65
5 M65
SH65
SM65
S465
SM65
S Y65
SM65
SY65
SM65
SMh5
SM65
SY65
SM65
SY65
SM65
SM65
SM65
SM65
SM65
SM65
SM65
SM65
SY65
5M65
SY65

SM65
SM65
SMh5
SM65
SP65
5M65
SY65
SM65
SM65
SY65
SY65
SH65
SH65
S Y h 5
Ft165
SM65

srw.5

s n 6 5

MFR
CODE

8 1 2 2 3 AUFFFR STOR

8 1 2 2 3 PUR CTL PNL
9 6 2 1 4 SUB ASSY
7 4 4 4 6 RECORDER
2 4 4 4 6 R ECORDER
9 6 2 1 4
9 6 2 1 4 TERM BRII ASS
9 6 2 1 4
0 3 8 4 8 PLATF ALIGN

9 6 7 1 4
0 1 2 9 4 O l F F AYPL
0 1 2 9 4
9R329 MflOULE
7 7 0 6 9 Y0I)ULE
770hR OC X C l T

9 8 9 2 5

S I G M O Y

0 3 9 4 8

77069 oc x c I r

9 6 2 1 4
9 6 2 1 4
9 6 2 1 4
9 6 2 1 4

9 7 4 0 0

2 4 4 4 6
0 1 2 9 4 YPL F IER
0 1 2 9 4 AMPL AUD FRE
9 6 2 1 4
9 6 2 1 4
0 4 6 6 2 T V CTL UN

0 1 2 8 1 HF AYPL
1 6 7 6 4
1 6 7 6 4
0 1 2 9 4 POWER SUPPLY
9 6 2 1 4 PWR SUPPLY
9 6 2 1 4
0 1 2 9 4

8 8 4 3 1 o i s r C A M UN

4 9 9 5 6
8 2 2 1 9 MODULE

8 2 2 1 9 YUDULE
82219 MnOULF
R2219 GFN

ECAN

28

APPENDIX E

ERROR MESSAGES

The e r r o r conditions recognized by the program are indicated by the following
messages:

F'IRST SEARCH TAPE HAS NO ID FILE

A directory was not found at the beginning of the first reel of the search tape set.
Execution is terminated.

INCORRECT CARD I S . . .

The user's input card that appears here is not a LIST, SORT, SEARCH, or END
card, or has no * in column 1. Card is ignored.

YOU FORGOT THE SEARCH CARD

No search statement appears in the input deck.

DIRECTORY EXCEEDS TABLES

Directory file defines more report fields than can be processed by the program.
Execution is terminated.

xxxxxx CARD. . UNKNOWN F'IELD WILL BE IGNORED. . .

The field name which is printed to the right has been found on control card xxxxxx
and is not a report field included in the search tape directory. Field is ignored.

YOU HAVE EXCEEDED THE MAXIMUM NUMBER O F ITEMS ON YOUR *xxxxxx CARD.

ONLY THE F'IRST xx ITEMS WILL BE USED.

More than the allowable number of field names appear in a LIST or SORT card.
(Limit is 2 for SORT card, 25 for LIST card.) Excess names are ignored.

29

NAME OR VALUE TOO LONG, READ xxx

The literals printed to the right appear within the search statement as either a
field name or value containing too many characters. Execution is terminated.

**ERROR . . . SEARCH STATEMENT INCOMPLETE

The search statement has ended at an unexpected point, for example, F/I NAME =
BULB AND. Execution is terminated.

**ERROR. . . UNKNOWN OPERATOR xxxxxx CARD READS . . .

xxxxxx appears in the context of a logical operator within the search statement, but
is not AND, OR, or NOT. Execution is terminated.

**ERROR . . . MISSING DELIMITER, OPERATION READS . . .

One of the surrounding $ for an operator of the search statement is missing. If the
operator is recognized, execution will continue.

**ERROR. . . CODE ITEM xx . . . IS UNKNOWN

The characters printed here were found as a field name within the search statement.
The field name does not appear in the directory.

INCORRECT DATE IS xxx

A date has been found in the search statement which is not in the proper format,
for example, FAIL DATE = 11/1764/. Execution is terminated.

**ERROR . . . CARD READING xxx . . . INCORRECT

The portion of the search statement which is printed here is meaningless. Execu-
tion is terminated.

SEARCH STATEMENT EXCEEDS TABLES

The search statement is too complex to be analyzed in the available table space.

30

**ERROR . . . PARENTHESES DO NOT BALANCE IN SEARCH

STATEMENT. NO PROCESSING.

Self-explanatory - execution is terminated.
There are five messages which may appear as part of the analysis of the search state-
ment.
they are the following:

They result from logic e r r o r s or redundancies within the search statements;

ABOVE CONDITION IS IMPOSSIBLE

The aforementioned AND segment requires the truth of two mutually exclusive condi-
tions. The segment is FALSE by definition.

ABOVE CONDITION IS ALWAYS TRUE

The aforementioned OR segment constitutes a logical tautology.

ABOVE CONDITION CAN BE SIMPLIFIED

This segment contains two or more requirements such that the truth of one implies
the truth of another.

***SEARCH STATEMENT IS IMPOSSIBLE

The truth of the search statement requires an impossible condition.

***SEARCH STATEMENT IS ALWAYS TRUE

The search statement is a logical tautology.
When a segment is found to be always true or always false, the effect of that segment on
the search statement as a whole is checked.
is either always true or always false. If this is so, execution is terminated. Otherwise,
the search statement is optimized to prevent checking the segment whose value is known.
and execution continues.

This may reveal that the entire statement

Consider the following search statement:

FAIL DATE GT 1/1/61 AND ((F/I NAME = BOLT OR F/I NAME

NE BOLT) OR (REPORT NO GT 1100 OR REPORT NO GT 1200))

31

AND (F/I MFR = A AND F/I MFR NE A)

This would reduce to segments of the following form:

(001 FAIL DATE GT 1/1/61 AND (002 TRUE AND (005 TRUE

(002 (003 TRUE OR (004 TRUE

(003 F/I NAME = BOLT OR F/I NAME NE BOLT

(004 REPORT NO GT 1100 OR REPORT NO GT 1200

(005 F/I MFR = A AND F/I MFR NE A

When subroutine PARTL scans these segments beginning with segment 5, the
following conditions will be detected:

(1) Segment 5 is impossible.
(2) Segment 4 can be simplified - it can be made simply REPORT NO GT 1100.
(3) Segment 3 is always true.
(4) Segment 2 must always be true since segment 3 is always true.
(5) Segment 1 is always false since segment 5 is always false.
(6) The search statement is recognized to be impossible and execution is terminated.

*LIST ITEMS EXCEED PAGE WIDTH. FIRST xxx WILL BE USED.

The report fields specified on the LIST card cannot be printed on a single output
line. Only the first xxx will appear.

32

APPENDIX F

PROGRAM CONTROL SECTIONS

Subroutines

MAIN. - Subroutine MAIN performs the following:
(1) It reads and interprets the directory file of the search tapes.
(2) It reads user input cards and calls interpreting subroutine for each.
(3) It writes directory file on the hit tape followed by end of file.
(4) It calls subroutine SELECT to perform search.
(5) If the number of hits is less than 1000, it calls subroutine FORM to generate,

(6) If sorted output has been requested, it calls subroutine SOUT to order and output

(7) If the output is not to be sorted, it calls subroutine TABL to print the contents of

WHICHl. - Subroutine WHICH1 performs the following:
(1) It is called by MAIN to interpret the contents of the SORT and LIST control cards.
(2) It extracts each field name from the control card (reading additional cards where

(3) It compares the extracted name to the list of recognized field names contained

(4) If a field name is unknown, it is ignored and an e r r o r message is printed.
(5) If the field name is found in NOMEN, a pointer to the field will be stored in

(6) If the number of names on the card exceed the capacity of INLIST, excess names

(7) When the next control card (identified by * in column 1) is encountered, control

NORMAL. - Subroutine NORMAL performs the following:
(1) It reads the search cards and prints as read.
(2) It checks field names against those contained in the search tape directory.
(3) It reports errors in format of the card.
(4) It converts search statement into normal form of a logical algebraic expression.

(5) It calls subroutine LEVEL to continue analysis of the search statement. On

from the user's LIST card, a format for tabular output.

results. Execution is terminated on return.

the hit tape. Execution is terminated on return.

necessary) .

in array NOMEN (common block /STUFF/).

argument array INLIST and the card wil l be scanned for additional names.

will be ignored and an e r r o r message printed.

returns to MAIN.

The normal form is constructed in a r ray EQUATN (common block /LIST/).

return from LEVEL, control returns to MAIN.

33

LEVEL. - Subroutine LEVEL performs the following:
(1) It develops from the normal form of the search statement, a string of tr iples for

a r r ay P (see Analysis of Search Statement).
(2) It removes unnecessary triples from P and orders remaining triples by C

value. (Array P is stored in common block /PROD/.)
(3) It calls subroutine PARTL to continue analysis. On return from PARTL, control

returns to NORMAL.
PARTL. - Subroutine PARTL performs the following:
(1) It scans a r ray P once from bottom to top. During this pass, the following are

performed:
(a) Each segment is printed out in expanded form using subroutine OUT.

segment numbers are converted to BCD form by subroutine BCD.
(b) Each triple is checked for logical consistency with other tr iples in its

segment using subroutine LOGIC.
(c) Each segment is assigned a cumulative length. Triples a re reordered

within segments according to their operand. Triples with simpler operands
a re placed at the beginning of their segment.

The

(2) It constructs the STEP ar ray (common block /LIST/).
(3) When STEP has been constructed, the analysis of the search statement is

BCD. - This subroutine converts a positive number less than 1000 to a six-character
complete and control is returned to LEVEL.

BCD string. The result is returned to the caller through labeled COMMON block
-

/BCDWD/.
OUT. - Subroutine OUT is called by PARTL to print a line of the search statement

analysis. The print line is prepared by PARTL in a r ray PRINT, common block
/PRINT/. On the first entry to OUT, the heading ANALYSIS O F SEARCH REQUEST
precedes the print line. If the print line is the first line of a new segment -- as indi-
cated by nonblank initial word -- a line will be skipped before printing.

LOGIC. - This subroutine is called by PARTL to check each triple whose operand
is a term of the search statement (as opposed to the value of another segment). If
another triple is found in the segment whose operand refers to the same report field as
does this triple's, the two operands a r e checked for logical compatibility. If one of the
operands is redundant, it is removed from the P array, the cumulative length of the
segment is decremented, and a redundancy flag is set. If the two operands produce a
logical tautology or inconsistency, the segment will be flagged as either true o r false.
When the triple has been checked against all other tr iples in its segment, control returns
to PARTL (see appendix E for further comment on logic checking).

--

SELECT. - Subroutine SELECT performs the following:
(1) It is called by MAIN to control the search operation.

34

(2) It initiates search by calling subroutine READ (with argument = NOBUF) to f i l l

(3) It checks each report form in turn against the search statement by the following

(a) Checking conditions in the order specified by STEP (see Analysis of Search

(b) 'When a report field is required for checking, calling subroutine GET to

the input buffer area (BUFFER) with report forms from the search tape.

methods:

Statement)

extract its value from the packed report form; the extracted field is saved
in case it should be referred to again by the search statement

search statement; if only part of the value is to be checked, subroutine
QUALFY is called

(c) Checking the extracted value for the field against the value specified in the

(4) It calls subroutine ADD to copy each report form that matches the search state-

(5) It calls subroutine READ (with argument = 1) to read more report forms from

(6) It calls subroutine ADD (with argument = 0) when the entire search tape has been

READ. - Subroutine READ performs the following:
(1) It is called by SELECT to read report forms from the search tape.
(2) When argument is 1, reports will be read into the section of buffer just checked

(3) When argument is not 1, the entire buffer area will be filled.

ment.

the search tape as soon as all forms from a section of BUFFER have been checked.

checked. Control i s then returned to MAIN.

by SELECT.

be the first entry to READ; therefore, READ also checks the first record read to be
sure it contains the number of report forms of the size expected.

This is assumed to

(4) It records the number of words read into each buffer section.
(5) If an end of file is encountered, it is skipped and reading continues from the next

(6) If an end of tape is encountered, reading continues from the next tape.
(7) If an end of set is encountered, the word count for the first empty buffer section

(8) Control returns to SELECT.
- GET. - This subroutine is called by SELECT to extract a particular field (field

LEFT) from a report form. The extracted field is placed in a r ray BUF (common B
block /LIST/), and its beginning location in BUF is placed in word LEFT of a r ray HOLD
(common block /PULL/). Word LEFT of a r ray HAVGOT (common block /PULL/) is
set equal to the sequence number of the report form. This enables SELECT to recognize
that the field has already been extracted and its value stored if the field should be
referred to again by the search statement. When the field is extracted, blanks are
removed and the value is right-adjusted.

file .

is set to -1 and the pointer to the next section is set to 0.

35

QUALFY. - - Subroutine QUALFY is called by SELECT to check a report field against
a partial value. It masks off the section of the field to be compared and checks against
the N characters of the search value.
does not contain N nonblank characters, it will be declared to be less than the search
value.)

ADD. - Subroutine ADD is called by SELECT. Jf argument # 0, a report form which
matches the search statement has been found. The hit count NOHIT (common block
/RESULT/) is incremented, and the report form is copied into a r ray OUTBUF. As soon
as OUTBUF is full, it is written onto the hit tape.

number of hits found, writes the end of set message on the hit tape, rewinds the hit tape,
and returns control to SELECT.

FORM. - Subroutine FORM is called by MAIN to supervise the generation of
FORTRAN FORMAT statements to be used in printing the search output.

FORM calls the generator FORMAT once for each field on the LIST card. IF
FORMAT detects that the requested fields would exceed the page width, an e r r o r
message is printed, and the excess fields will not appear in the output. Two formats
a re produced, TFMT which is used for the heading line, and FMT which is used to print
the report fields. When all fields have been considered, FORM inserts the closing
right parentheses and returns control to MAIN.

FORMAT specifications for printing the name and value of a report field. The specifica-
tions a re added to the current contents of a r ray TFMT and FMT, respectively. In con-
structing the specification, FORMAT does the following:

specification in order to keep the two formats in alinement.

width exceeds the value width by eight characters or more. The parts will appear in the
heading one beneath another.

(3) Maintains a count of the number of print positions used (in variable KOLUMN).
If it is determined that a new field will cause KOLUMN to exceed MAXWID (set in
FORMAT), the logical variable NOMOR is set to TRUE and control returned to FORM.
(For the application described in this report, an exception is made for overflow caused
by the three description fields, DESC LINEl, DESC LINEB, and DESC LINE3. If they
are requested as the final fields on the LIST card, they will be printed as a second and
third line of report output, with no title provided.

Subroutine BCD is used to convert numeric par ts of the FORMAT to BCD form. The
two arrays, TFMT and FMT, are initially set to blanks except for the first word of each,
which is initialized to contain a carriage control character.

(If the value of the field from the report form

-

If the argument = 0, the search is complete. Subroutine ADD prints out the total

FORMAT. - Subroutine FORMAT is called by subroutine FORM to generate

(1) Includes the appropriate number of skipped columns in either the title or value

(2) Attempts to break the field name into as many as three parts when the name

36

SOUT. - Subroutine SOUT performs the following:
(1) It is called by MAIN to control the ordering and output of the tabular reports

(2) SOUT defines the following ar rays for the sort field(s) and each of the fields
requested on the LIST and SORT control cards.

to be listed:
(a) WORD - ending word location within the report form of sor t fields or the

beginning word location within the report form of fields to be listed
(b) SHIFT - number of bit positions the ending word must be shifted right to

right-adjust the field (for sor t fields), or (for listing fields) the number of
bit positions the beginning word must be shifted left to left-adjust the field

listing fields).
(c) LONG - the length of the field in bits (for sor t fields) or in words (for

(3) It records (in LENGTH) the number of words required to hold all extracted and

(4) It determines (in WORD2) the number of records from the hit tape which can be
This is based upon the size of BUFFER (set at 15 000

‘(5) It determines, if sufficient storage is not available to sort all the hits at once,

adjusted sor t and listing fields from a report form.

sorted in the available storage.
words), LENGTH, and LRLREC (the number of report forms per hit tape record).

the number of batches of sorted output which will be required. Since the program is not
designed to generate large amounts of output, no provision is made for merging the
sorted batches. If the number of hits exceeds the number of report forms which can be
sorted internally, the output wil l appear in several batches - each of which is ordered,
but has no order relation to other batches.
sorted internally and, consequently, the number of batches into which the output will be
divided, is a function of the number and size of report fields on the LIST and SORT cards.

(6) It reads, from the hit tape, the WORD2 records to be sorted. As each record
is read, the required fields are extracted from all its report forms using the information
in a r rays WORD, SHIFT, and LONG. Those fields which did not appear on the LIST
or SORT cards are discarded.

each report form is extracted, it is compared to the sor t field of the previous report
form.
they appear on the hit tape a re identified. The location, within BUFFER, of the first
member of the Ith such group of report forms is recorded in word 1 of LISTl and
word 1-1 of LIST2 (except that no entry is made in LIST2 for I = 1).

When the WORD2 records have been read and their contents prepared as described
previously, SOUT calls subroutine SORTER to perform ordering and output. When the
process is complete for all batches, control is returned to MAIN.

ordered output of the search results. The order of output is determined as described

Note that the number of reports which can be

(7) It defines a r r ays LISTl and LIST2 in the following manner: As the sor t field of

In this way, consecutive report forms whose sor t fields happen to be ordered as

SORTER. - Subroutine SORTER is called by subroutine SOUT to supervise the

37

in the section Output Ordering.
fields of each report form in sequence. When output is complete, control is returned to
SOUT.

OUTPUT. - Subroutine OUTPUT is called to print the requested fields from a
report form. The two format arrays, TFMT and FMT, which were generated by
FORMAT are used. OUTPUT maintains a count of the number of lines printed per page
(variable LINEKT). When the maximum number permitted per page (variable NOLINE
set in FORM) has been printed, a new page is started with the heading lines repeated.

TABL. - Subroutine TABL is called by MAIN to supervise the printing of unsorted
output. It first builds the three arrays, LONG, SHIFT, and WORD, described under
subroutine FORM. It then begins reading records from the hit tape. When enough
records have been read to f i l l the BUFFER area, the accumulated report forms are
processed as follows:

LONG, SHIFT, and WORD. The extracted fields from a report form a re stored in HOLD,
and subroutine OUTPUT is called to print them from there.

SORTER calls subroutine OUTPUT to print the listing

The fields requested on the LIST card a re extracted and adjusted using a r rays

When all hit forms have been printed, control returns to MAIN.

Principal Named Common Blocks

The principal named common blocks are the following:

/MESG/ (3 words (defined in MAIN)):

EOF
EOS
EOT

OTAPE

LNGABS
LNRE C
LRABS

end of file message
end of set message
end of tape message (see definition in appendix B)

/OUTTAP/ (1 word):

tape number to be used as the hit tape (defined in MAIN)

/RECORD/ (5 words):

length (in words) of each report form on search tape
number of report forms per record on the search tapes
length (in words) of each report form as it will be copied on

the hit tape

38

LRLREC

RECKNT

F'ILE
SEARCH(5)

TAPE

MAXTAP

number of report forms per record as they will be packed on

pointer to front of report form - modified during execution
the hit tape

/FILES/ (7 words):

pointer to tape currently being searched
the tape numbers assigned to the search tapes (defined in

tape number currently being searched
MAIN)

/NOTAPE/ (1 word):

(set in MAIN) defines maximum number of reels for the search
file

/VALUS/ contains the NOUN, PRED, O W , and TABL ar rays as described in the

section Analysis of Search Statement

/FIELD/ contains the LNGV and LNGN ar rays which give the number of bits

in a report field and the length, in bits, of the field name, respectively

/LIST/ (1422 words):

In subroutines NORMAL, LEVEL, and LOGIC, the words a re used as follows:
a pointer to the last entry in a r ray EQUATN
750-word ar ray contains the normal form of the search state-

320-word ar ray used as scratch area during analysis
350-word ar ray used as scratch area during analysis
scratch variable used during analysis

I
EQUATN

LIST
KVEC
JMAX

ment

In subroutines PARTL, TABLE, SELECT, and GET, the words are allocated as follows:
I used as scratch variable
STEP

HOLD

400-word array described in section Analysis of Search State-

50-word ar ray that points to an extracted field's location in BUF
ment

39

BUF

IHOLD
words 903 to 1422

LREC(6)

BUFFER(950,6)
IBUF

NOBUF

IOUT
INTAPE

LAST

I1
I2
I3
TFMT

FMT

K

INTCNT
KLEAR

450-word BUF used as a temporary storage area for

pointer to next available location in BUF
scratch area

extracted fields during report checking

/BUFFER/ (5708 words):

variables give the number of data words in each section

used as input BUFFER area for report forms
points to the section of BUFFER which contains the

constant (set at 6 in SELECT) which defines the number

of BUFFER

report form currently being checked

of sections in ,BUFFER

/TAPES/ (2 words (set in MAIN)):

number of the system output unit (set to 6)
number of the system input unit (set to 5)

/FORMS/ (204 words):

(set in FORMAT) specifies the major dimension of
a r rays FMT and TFMT following

number of words used in column 1 of TFMT
number of words used in column 2 of TFMT
number of words used in column 3 of TFMT
150-word ar ray which contains the FORMAT statement

for printing the search output heading; its three
columns permit the heading to be three lines long

printing the report forms
50-word ar ray which contains the FORMAT statement for

/SORTC/ (18 025 words):

number of naturally ordered groups of report forms to be

number of report forms (in a batch) to be sorted
number of words in the sor t field(s) of each report form

sorted

40

~ 1 ~ ~ 1 (1 0 0 1)
LIST2 (1001)
BUFFER(15 000)

HAVE (1 001)
LENGTH

PREV(16)
BE GIN
MANY

ar ray defined in description of SOUT
ar ray defined in description of SOUT
storage area for sor t and listing fields of report forms

see section Output Ordering
number of words required for sort and listing fields

from each report form
scratch area
scratch variable
number of words in listing fields

to be sorted

41

REFERENCE

1. Sheridan, Peter B. : The Arithmetic Translator-Compiler of the IBM Fortran
Automatic Coding System. Comm. Assoc. Comp. Mach., vol. 2, no. 2, Feb.
1959, pp. 9-21.

42 NASA-Langley, 196'7 - 9 E-3383

“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results tbereo f :’

-NATIONAL AERONAUnCS AND SPACB ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowldge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of
importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-
tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated
under a NASA contract or grant and considered an important contribution to
existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA
activities. Publications include conference proceedings, monographs, data
compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech-
nology used by NASA that may be of particular interest in commercial and other
non-aerospace applications. Publications include Tech Briefs, Technology
Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. PO546

